Preliminary communication

The synthesis of derivatives of $O-\beta$ -D-galactopyranosyl- $(1\rightarrow 3)$ -O-(2-acetamido-2-deoxy- α -D-galactopyranosyl)-L-serine and -L-threonine

VICENTE VEREZ BENCOMO, JEAN-CLAUDE JACQUINET, AND PIERRE SINAŸ*

Laboratoire de Biochimie Structurale, E.R.A. 739, U.E.R. de Sciences Fondamentales et Appliquées, 45046 Orléans Cédex (France)

(Received July 5th, 1982; accepted for publication, September 2nd, 1982)

The MN blood-group antigenic determinants are located^{1,2} on an N-terminal octaglycopeptide of glycophorin A, a major protein of the human erythrocyte membrane³. Evidence is accumulating that the structural difference between the M and N antigens is represented by two amino acid polymorphisms at the first and fifth positions of this protein⁴. Also, considerable interest has been focused on the MN blood-group system, because one of its precursor substances, the T antigen, is expressed on malignant, but not on benign or normal, breast glandular tissue⁵.

In order to elucidate the character and size of the M, N, and T specific immunodeterminants, we have launched a programme on the chemical synthesis of various model glycopeptides. One aim of this work is to study the influence of the "density" of carbohydrate haptens on a peptide backbone on the specificity of the corresponding antibodies or lectins. We now report the chemical synthesis of O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-O-(2-acetamido-4,6-di-O-acetyl-2-deoxy- α -D-galactopyranosyl)-N-(benzyl-oxycarbonyl)-L-serine tert-butyl ester (9) and O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-N-(benzyl-oxycarbonyl)-L-threonine tert-butyl ester (11), which are versatile monomeric units for subsequent syntheses of glycopeptides required to study the molecular basis of the expression of the T-antigen.

Treatment of benzyl 2-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside with tetra-O-acetyl- α -D-galactopyranosyl bromide [Hg(CN)₂, acetonitrile, room temperature, 24h] gave benzyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- β -D-galactopyranoside** (1, 70%), m.p. 206° (from methanol), [α]_D -6°. Removal (aqueous 70% acetic acid, 90°, 2 h) of the benzylidene group from 1 afforded the diol 2, m.p. 210–211° (from methanol), [α]_D -23°, which was acetylated (Ac₂O, pyridine) to give 3, m.p. 108–109° (from methanol), [α]_D -17.5°. ¹³C-N.m.r. data (CDCl₃): δ 100.0

^{*}To whom enquiries should be sent.

^{**}Satisfactory elemental analyses and n.m.r. data were obtained for all intermediates and products. Optical rotations were measured for solutions in chloroform at 20°.

(C-1' β), 98.6 (C-1 β). Catalytic hydrogenolysis (10% Pd/C, methanol—ethyl acetate, 24 h) of 3 followed by acetylation (Ac₂O—pyridine) gave 4 (92% from 1), m.p. 160—161° (from ethanol), [α]_D -53°. ¹H-N.m.r. data (CDCl₃): δ 4.59 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1').

The glycosyl bromide 5 (87%), $[\alpha]_D$ +103°, was then prepared (HBr-acetic acid, 0°, 1 h) from 4 and transformed (Zn-acetic acid, 0°, 4 h) into the glycal 6 (92%), $[\alpha]_D$ -3°.

¹H-N.m.r. data (CDCl₃): δ 6.39 (d, 1 H, $J_{1,2}$ 6.6 Hz, H-1). Application of the well-established azidonitration—bromination sequence 7 to 6 gave the azido bromide 7 (41%), $[\alpha]_D$ +81°.

¹H-N.m.r. data (CDCl₃): δ 6.49 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1).

Condensation of 7 (silver triflate, dichloromethane, $-60^{\circ} \rightarrow 20^{\circ}$) with the *tert*-butyl ester of N-(benzyloxycarbonyl)-L-serine⁸ gave 8 (61%), together with some β isomer (11%). Reduction (NaBH₄, NiCl₂, methanol) of 8 followed by acetylation (Ac₂O-methanol) gave 9 (83%), $[\alpha]_D$ +57.5°. ¹H-N.m.r. data (CDCl₃, 400 MHz): δ 7.34 (s, 5 H, Ph), 5.77 (d, 1 H, $J_{2,NH}$ 9 Hz, NHAc), 5.63 (d, 1 H, NH), 5.34 (d, 2 H, H-4,4'), 5.12 (m, 3 H, CH₂Ph) and H-2'), 4.95 (q, 1 H, H-3'), 4.87 (d, 1 H, $J_{1,2}$ 3.6 Hz, H-1), 4.58 (d, 1 H, $J_{1',2'}$ 7.6 Hz, H-1'), 4.50 (m, 1 H, $J_{1,2}$ 3.6, $J_{2,3}$ 11 Hz, H-2), 1.95–2.20 (7 s, 18 H, 6 Ac), and 1.50 (s, 9 H, ¹Bu).

Condensation of 7 with the *tert*-butyl ester of *N*-(benzyloxycarbonyl)-L-threonine⁸ gave exclusively the α -compound 10 (54%), $[\alpha]_D$ +58°, which was then transformed into 11 (80%), $[\alpha]_D$ +55°. ¹H-N.m.r. data (CDCl₃. 400 MHz): δ 7.36 (s, 5 H, Ph), 5.87 (d, 1 H, $J_{2,NH}$ 8 Hz, NHAc), 5.48 (d, 1 H, NH), 5.33 (d, 2 H, H-4,4'), 5.13 (m, 3 H, CH₂Ph and H-2'), 4.91 (q, 1 H, H-3'), 4.80 (d, 1 H, $J_{1,2}$ 3.4 Hz, H-1), 4.55 (d, 1 H, $J_{1',2'}$ 8 Hz, H-1'), 4.53 (m, 1 H, H-2), 1.95–2.16 (7 s, 21 H, 7 Ac), 1.46 (s, 9 H, [†]Bu), and 1.35 (d, 3 H, Me).

The salient features of this work are the availability of the bromide 7, which is a good chemical precursor of various T-antigen-containing structures, and the derivatives 9 and 11, which are useful building units for the synthesis of various glycopeptides having potential T-activity. The preparation of such glycopeptides will be reported elsewhere.

ACKNOWLEDGMENTS

We thank the Institut National de la Santé et de la Recherche Médicale (C.R.L. No. 821027) for financial support, and the Ministère des Relations Extérieures (France) for a fellowship to one of us (V.V.B.).

REFERENCES

- 1 W. Dahr and G. Uhlenbruck, Hoppe-Seyler's Z. Physiol. Chem., 359 (1978) 835-843.
- 2 E. Lisowska and K. Waśniowska, Eur. J. Biochem., 88 (1978) 247-252.
- 3 M. Tomita and V. T. Marchesi, Proc. Natl. Acad. Sci. U.S.A., 72 (1975) 2964-2968.
- 4 O. O. Blumenfeld and A. M. Adamany, Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 2727-2731; W. Dahr, Blood Transfusion Immunohaematol., 24 (1981) 85-95, and references therein.
- 5 G. F. Springer, P. R. Desai, and E. I. Banatwala, J. Natl. Cancer Inst., 54 (1975) 335-339;
 - G. F. Springer, P. R. Desai, M. S. Murthy, H. J. Yang, and E. F. Scanlon, *Transfusion (Philadelphia)*, 19 (1979) 233-249.
- 6 G. F. J. Chittenden and J. G. Buchanan, Carbohydr. Res., 11 (1969) 379-385.
- 7 R. U. Lemieux and R. M. Ratcliffe, Can. J. Chem., 57 (1979) 1244-1251.
- 8 H. Kinoshita, H. Ishikawa, and H. Kotake, Bull. Chem. Soc. Jpn., 52 (1979) 3111-3112.